Педагогика и воспитание » Развитие познавательного интереса учащихся на уроке математики начальной школы с помощью сюжетных задач » Сюжетные задачи, как способ развития интереса у младших школьников

Сюжетные задачи, как способ развития интереса у младших школьников

Страница 7

Почему число, с которым сложился ноль, осталось недовольно?

Приведите два примера, иллюстрирующих слова сказки: "…стать парами и вычесть меньшее число из большего: у кого ответ получился меньше, тот получит больше воды. ". почему число, стоящее в паре с нулем, оказалось в проигрыше? Могут ли числа встать так, чтобы каждой паре досталось воды поровну? Приведите примеры.

Почему число, стоящее в паре с Нулем, не получило воды от реки Умножение?

Почему при переходе через реку Деление числа не захотели становиться в пару с Нолем?

Во сколько раз первое число больше или меньше второго: 7 и 70, 3 и 30, 50 и 5?

Предложить ребятам сочинить продолжение сказки можно, видимо, после четвертого пункта. Здесь уже чувствуется авторский замысел, математическая закономерность. Впрочем, такую работу можно организовать и после третьего пункта, если дать некоторые советы: а) каждая река ставит перед числами задачу, которую невозможно успешно решать в паре с Нолем; б) сказка должна закончиться счастливо, как это обычно бывает.

Под заданием с пропусками подразумевается Выделение интонацией (отдельные предложения можно выписать на доске) отсутствие некоторых слов, но которые можно восстановить по смыслу сказки, на основе строгой взаимосвязи математических понятий. Например, в 5-м абзаце: "Число, стоящее в паре с Нолем, вообще не… воды"; в 6-м: " Она стала просто приписывать ноль рядом с числом, которое от этого . в…раз".

Вышеописанные приемы работы можно комбинировать. Такие сказки на уроках повторения и закрепления делают их более разнообразными и интересными. Сказки и вопросы к ним дают большой воспитательный эффект и способствуют развитию мышления.

Вот еще несколько сказок, с которыми можно провести аналогичную работу.

После 60-х гг. аналитический способ решения сюжетных задач прочно вошел в практику обучения не только средней школы, но и начальной. В 1962–1964 гг. на страницах журнала «Математика в школе» прошла оживленная дискуссия по этому вопросу. Б.В. Гнеденко и А.И. Маркушевич критиковали сложившуюся в школе практику решения текстовых задач преимущественно арифметическими методами и требовали «сдвига» на алгебраический метод. Так, Б.В. Гнеденко писал: «Приверженцы установившихся в школьном математическом преподавании традиций утверждают, что чисто арифметическое решение задач на уравнения первой степени якобы развивает логические способности учащихся. На меня этот аргумент действует примерно так же, как утверждение, что изучение Талмуда способствует развитию у учащихся строгости логического анализа. Такое утверждение до некоторой степени правильно, однако едва ли кто-либо из нас сочтет этот аргумент достаточным для введения Талмуда в курс средней школы в качестве особого предмета» .

А.И. Маркушевич писал, что «следует критически пересмотреть традиционное отношение к арифметическим методам решения задач и остатки «культа» этих методов изжить из нашей школы».

Особенно резко выступил А.Я. Хинчин против использования в школе арифметических методов решения задач. Приведя примеры арифметического решения задач и показав, что это «дословный перевод . алгебраического решения с языка формул на язык слов», далее он писал: « .положительно утверждаю, что почти все арифметические задачи на соображение, выходящие за пределы просто вычислительных примеров, носят тот же характер; это сплошь алгебраические задачи на составление уравнений и систем уравнений первой степени. Конечно, если угодно, то можно всегда, ценою весьма неприятной искусственности и значительного затемнения метода, весь необходимый алгебраический анализ задачи провести словесно, без формул и буквенных обозначений . надеюсь, что я не одинок в резком чувстве отвращения к подобного рода «арифметическим» решениям.

Страницы: 2 3 4 5 6 7 8


Другое по теме:

Виды учебных действий
Учебные действия — это основной структурный компонент учебной деятельности. Учебные действия образуют целостную систему. При усвоении научных понятий центральное место в ней занимают специфические преобразования предмета, направленные на выявление в нем определенных отношений, составляющих содержан ...

Средства и методы развития быстроты движений
Быстрота – это комплекс свойств, непосредственно определяющих скоростные характеристики движения, а также время двигательной реакции. Быстрота движений обусловливается в первую очередь соответствующей деятельностью коры головного мозга, подвижностью нервных процессов, вызывающих сокращение, напряже ...

Место магистратуры в современной модели инженерного образования
Инженерное образование всё ещё является важной составляющей отечественной системы высшего профессионального образования – более 30% выпускников наших вузов получают образование по направлениям и специальностям в области техники и технологии. Так, при распределении бюджетных мест в 2010/2011 учеб. г ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru