4. Четвертый период (1918 – 1933 гг.) – характеризуется тем, что «по инерции» вопросы высшей математики, заложенные в дореволюционном курсе отдельных типов средних учебных заведений, включались в проекты программ для средней школы, но не нашли воплощения на практике.
5. Пятый период (1934 – 1964 гг.) – создание и функционирование советской модели классического школьного математического образования, игнорирующей элементы высшей математики на старшей ступени обучения.
6. Шестой период (1965 – 1976 гг.) - широкая апробация элементов математического анализа в школьном курсе (в т. ч. на факультативах и математических кружках), постепенное введение элементов дифференциального и интегрального исчисления в массовую среднюю школу, поиск наиболее рациональной конструкции модели (объема, содержания и порядка изложения).
7. Седьмой период (1977 – конец 80-х гг.) – стабилизация содержания сведений из высшей математики в школьном курсе, период массового включения начал дифференциального и интегрального исчисления в среднюю школу, введение стабильного учебника «Алгебра и начала анализа» (под ред. А.Н. Колмогорова). Несмотря на контрреформацию содержания математического образования начала 80-х гг., элементы математического анализа в школьном курсе были сохранены. В это время создана современная методика обучения математическому анализу в средней школе (Ю.М. Колягин, Г.Л. Луканкин, Н.А. Терешин и др.).
8. Восьмой период (начало 90-х гг. по настоящее время) – время поиска оптимального объема и конструкции начал математического анализа в средней школе в условиях фуркации старшей ступени школы на курсы А и В. В целом характеризуется ослаблением составляющей начал математического анализа.
В данном исследовании, предлагая именно такую модель распределения фактов истории математического образования по этапам, автор помимо закономерностей функционирования математического образования в разных социально-педагогических условиях, учитывал, в первую очередь, значение, которое придавалось высшей математике в этом процессе: изменение роли и места (ослабление или усиление) высшей математики в школьном обучении.
Таким образом, рассматриваемая периодизация, служит моделью для схематического описания генезиса обучения высшей математике в отечественной школе XVIII-XXI вв.
О.В. Тарасова выделяет два периода становления и развития геометрического образования: европейский период и русский период. Первый период (I – V этапы) относится к становлению и развитию обучения геометрии в европейской школе (VI – IV вв. до н.э. – конец XVII века). Второй период (VI – X этапы) соотносится со становлением и развитием обучения геометрии в отечественной средней школе (конец XVII века – революция 1917 года) .
Рассмотрим эти два периода по этапам.
Первый этап (VI – IV вв. до н.э.) – период преобразования практической геометрии в науку теоретическую и начало обучения геометрии. Геометрия из элитной науки, доступной немногим, довольно широко распространилась, постепенно стала предметом открытого обучения. Этому способствовали различные научные школы (Фалес Милетский, Пифагор, Гиппократ Хиосский и др.)
Второй этап (начало III в. до н.э. – до Рождества Христова) – период возникновения научного систематического курса геометрии, благодаря написанию Евклидом «Начал» - труда, по замыслу автора, предназначенного для закрытого обучения. Тем самым была создана прочная база для дальнейших теоретических исследований (Евклид, Архимед, Аполлоний Пергский и др.).
Третий этап (I в. – до конца XV в.) – период начала схоластического обучения геометрии (в монастырях, городских училищах, университетах и т. п.).
Четвертый этап (начало XVI в. – до конца XVI в.) – период начала критики евклидовского курса в качестве школьного учебника. Создание первых курсов, ориентированных на практические начала геометрии (геодезию, черчение, предметы окружающего мира) (П. Рамус).
Другое по теме:
Особенности двигательного развития детей
Движение для ребенка – это универсальное проявление жизнедеятельности, на различные раздражения он реагирует прежде всего движением (например, отдергивание руки при ожоге пальца, сосательные движения младенцев при раздражении губ и щек и т.д.). Вместе с тем от рецепторов мышц, сухожилий, суставов, ...
Уравнения колебания струны
Будем считать, что струна обладает постоянной линейной плотностью r и растянута силой натяжения P. Направление оси x выберем вдоль положения равновесия струны, через y обозначим поперечное отклонение в точке x в момент времени t. Предполагается, что угол наклона ¶y/¶x кривой, образованный струной в ...
Возрастные особенности
"Я-концепции"
К концу подросткового возраста формируется устойчивая система внутренне согласованных представлений о самом себе (теория собственного "Я"). При этом она может и не совпадать с реальным "Я". В 11-12 лет ребенок хочет понять себя, что он из себя представляет, то есть построить сво ...