Новая педагогика » Содержательный анализ массовых школьных учебников по геометрии как форма методической и учебно-методической работы » Реализация аксиоматического подхода у А.В. Погорелова

Реализация аксиоматического подхода у А.В. Погорелова

Страница 2

Предлагается разобрать эти понятия на примере теоремы: «если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон» . Только после доказательства теоремы автор говорит, что «утверждения, содержащиеся в формулировках основных свойств простейших фигур, не доказываются и называются аксиомами. Слово «аксиома» происходит от греческого слова аксиом и означает утверждение не вызывающее сомнений».

В следующем абзаце вводятся «правила» аксиоматического метода. А. В. Погорелов пишет «при доказательстве теорем разрешается пользоваться основными свойствами простейших фигур, т.е. аксиомами, а также свойствами уже доказанными, т.е. доказанными теоремами. Никакими другими свойствами фигур, даже если они нам кажутся очевидными, пользоваться нельзя» .

К концу первой главы введены все основные аксиомы Евклидовой геометрии, описаны все теоретические понятия, которые используются в геометрии, и приведены соответствующие примеры.

А. В. Погорелов не говорит и не дает представления о возможности разных интерпретаций свойств в разных теориях. Введя аксиомы таким способом, А. В. Погорелов сразу говорит о свойствах фигур. Аксиома, заданная как свойство, уже не может быть интерпретирована в другой теории, уже невозможно провести соответствие с реальным миром.

А. В. Погорелов не дает возможность интерпретации аксиом как свойств простейших фигур, в следствии чего возникает убеждение, что аксиомы прямо соответствуют свойствам.

После сравнения аксиом, введенных А. В. Погореловым, с аксиомами евклидовой геометрии рассмотрим несколько примеров введения понятий.

Предварительно стоит уточнить, что одним из основных правил составления А. В. Погореловым учебника, является правило использование уже известных и доказанных ранее фактов. Листая учебник можно уточнить это правило. «Используемые понятия должны быть введены «недавно, рядом», лучше, если в этой же главе.

Рассмотрим примеры введения понятий в учебнике А. В. Погорелова с точки зрения аксиоматического подхода и нашего уточнения.

1. Параграф 4 главы 1 «Планиметрия» называется «Сумма углов треугольника». Первое, что мы видим в этой главе «признаки параллельности прямых». У школьников и у студентов, критикующих учебник часто возникает вопрос: «Причем здесь признаки параллельности прямых?».

В поисках ответа на этот вопрос листаем дальше. Следующий пункт этой главы «Сумма углов треугольника». Вот и ответ.

Для доказательства теоремы о том, что сумма углов треугольника равна 180, нужны знания о параллельных прямых и сумме внутренних накрест лежащих углов, которые вводятся в пункте «признаки параллельности прямых».

А. В. Погорелов решил проблему «недостающих знаний», введя их непосредственно перед необходимостью использовать.

Разобрав структуры с точки зрения аксиоматического подхода становиться заметной необходимость такого строения. Ученик не может восстановить замыслы автора, поэтому для него подобные вставки остаются безосновательными. На наш взгляд, такое построение учебника приводит к тому, что у ученика к концу школы складывается четкое непонимание геометрии.

2. Такое же построение учебного материала отмечено и в параграфе 5 этой же 1 главы. Параграф называется «Геометрическое построение». В пунктах 26 –33 действительно производиться построение, а вот пункт 24 (опять же первый в параграфе) «Окружность».

Какое отношение имеет понятие окружность к параграфу про построение? Самое прямое. Все построения, так или иначе, связаны с понятием окружности, а оно еще не было введено, следовательно, с точки зрения из аксиоматического подхода, пользоваться им нельзя. Конечно нельзя, но ввести то можно. Теперь, когда введено понятие окружности, объяснения построений становиться возможным.

Страницы: 1 2 3 4


Другое по теме:

Системы высшего образования в некоторых других странах. Нидерланды
Высшее образование в Нидерландах можно получить в колледже (hogescholen), университете или Открытом университете (вечернее или заочное обучение). В стране действуют 13 университетов (самый старый университет Нидерландов – Лейденский, основанный еще в 1575) и Открытый университет для взрослых. Высше ...

Исторические вопросы методики преподавания математики в России
Математическое образование в России находилось в 9—13 веках на уровне наиболее культурных стран Восточной и Западной Европы. Затем оно было надолго задержано монгольским нашествием. В 15—16 веках в связи с укреплением Русского государства и экономическим ростом страны значительно выросли потребност ...

Психолого-педагогическая характеристика учащихся 5-6 классов
Возраст учащихся 5-6 классов находится на границе возраста младшего школьника (от 7 до 11 лет) и подросткового возраста ( от 11 до 15 лет). Младший школьный возраст – начало школьной жизни. Вступая в него, ребёнок приобретает внутреннюю позицию школьника, учебную мотивацию. Учение для него – значим ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru