Новая педагогика » Развитие мышления и речи на уроках математики » Развитие творческих способностей через обучение решению текстовых задач

Развитие творческих способностей через обучение решению текстовых задач

Страница 2

АС = СЕ.

Если вы измерите расстояние СЕ, например, шагами, вы узнаете расстояние АС, а отняв ВС, которое легко измерить, определите искомую ширину реки.

Второй способ. Здесь также находят точку С на продолжении АВ и намечают при помощи булавочного прибора прямую CD под прямым углом к СА (рис. 5).

На прямой CD отмеряют равные расстояния СЕ и EF произвольной длины и втыкают в точки E и F вехи. Став затем в точке F с булавочным прибором, намечают направление FG, перпендикулярное к FC. Теперь, идя вдоль FG, отыскивают на этой линии такую точку H, из которой веха Е кажется покрывающей точку А. Это будет означать, что точки Н, Е и А лежат на одной прямой. Задача решена: расстояние FH равно расстоянию АС, от которого достаточно лишь отнять ВС, чтобы узнать, искомую ширину реки.

При разрешении этой ситуации переходят сначала к задаче (модели задачи), формулировали ее на математическом языке, и только после чего ее решали. В первом способе ставили перед собой задачу: используя известный равнобедренный прямоугольный треугольник измерить длину отрезка АВ. Во втором способе – использовать признаки равенства треугольников для нахождения длины отрезка АВ.

Процесс творчества в математике можно начать с анализа задачи и перехода от нее к формулировке ситуации, которая сама по себе может рождать целый спектр прикладных задач в зависимости от направления предпринятых действий.

Рассмотрим следующие примеры.

Задача 3. Задача древних индусов. Над озером тихим, с полфута размером, высился лотоса цвет. Он рос одиноко. И ветер порывом отнес его в сторону. Нет боле цветка над водой, нашел же рыбак его ранней весной в двух футах от места, где рос. Итак, предложу я вопрос: как озера вода здесь глубока?

Обозначим (рис. 6) искомую глубину CD озера через x , тогда

BD = x + 0,5,

CB = 2

и по теореме Пифагора легко найди искомую глубину.

Это задача, у нее четкое формулировка условия, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций.

Попробуем превратить данную задачу в ситуацию.

Задача 4. Как можно измерить глубину реки с берега?

Контрольное решение: рассмотрим ресурсы, которыми мы располагаем. Текущая вода, берег, дно, человек. Упростим задачу. Как измерить с берега глубину водоема с неподвижной водой? Например, с берега озера. Тоже непросто, упростим еще. Как измерить глубину неподвижной воды у самого берега. А это равносильно измерению глубины колодца. Надо привязать к камню веревку или леску с поплавками, разнесенными, скажем, на 1 метр и бросить камень в колодец, или применить метод из задачи 3. А как измерить глубину озера с берега? Во-первых, надо чтобы веревка была перпендикулярна поверхности воды. Как это сделать? На веревку с камнем навесим поплавки и бросим камень в нужное место озера, тогда будет видно, сколько поплавков утонуло, а сколько лежит на поверхности. Введем следующее усложнение задачи – течение. Отметим место на берегу реки и перпендикулярно берегу бросим камень с веревкой и с поплавками на середину реки. Течение отнесет веревку с поплавками на расстояние В. Определим число погруженных поплавков K и рассчитаем по теореме Пифагора глубину реки

.

В данном примере рассматривается переход от ситуации к формулировке задачи, уточняли ее, рассматривали используемые ресурсы. Однако с дидактических позиций предварительное решение задачи древних индусов помогло при анализе ситуации, что привело к разрешению более «мелких» проблем.

Очевидно, предложенная ситуация может быть разрешена и другими способами, в том числе и нематематическими.

Такие задачи надо давать со ссылкой на источник, а еще лучше непосредственно принести в класс газету, книгу, сводку и т. д. Все это даст возможность развить у учащихся чувство причастности ко всему, что происходит в мире.

При прохождении педагогической практики в гимназии №23 города Владимира, так как в этой школе проводился год, посвященный П. Л. Чебышеву на одном из уроков я показывала ученикам презентацию на тему «Чебышев П. Л., его биография и открытия». На данном уроке, я пыталась развить у учащихся интерес к истории науки, тем самым сформировать научное мировоззрение.

Презентация, которая использовалась на моем уроке:

1 слайд:

2 слайд:

3 слайд:

Страницы: 1 2 3


Другое по теме:

Детский сад Л.К. Шлегер
Луиза Карловна Шлегер (1863-1942) была известным деятелем дошкольного воспитания в дореволюционные годы и в первые годы Советской власти и оказала заметное влияние на развитие теории дошкольного воспитания. В ряде работ ("Материалы для бесед с маленькими детьми", "Практическая работа ...

Роль самовоспитания в нравственном развитии личности
Нравственные качества представляют собой интегральные, наиболее обобщенные и устойчивые свойства личности. В основе структуры нравственных свойств личности лежит взаимосвязь моральных знаний и соответствующих переживаний. Поэтому путь ценностного осознанно—эмоционального усвоения морали в процессе ...

Взаимосвязь дидактических принципов обучения
Дидактические принципы связаны друг с другом. Применять эффективно какой-нибудь принцип можно лишь в том случае, если одновременно при этом принимать во внимание все другие принципы. Так, принцип научности сам по себе не вызывает сомнений. Чем выше уровень обучения, тем лучше, успешнее, результатив ...

Категории

Copyright © 2020 - All Rights Reserved - www.edubrilliant.ru