Новая педагогика » Развитие мышления и речи на уроках математики » Развитие творческих способностей через обучение решению текстовых задач

Развитие творческих способностей через обучение решению текстовых задач

Страница 1

Большие возможности для воспитания мировоззрения представляют текстовые задачи. Не останавливаясь на неоднократно отмечавшемся значении таких задач, как простейшей, но достаточно четкой модели применения математики к изучению действительности, в которой содержится три характерных момента: перевод реальной задачи на математический язык, исследование внутри модели и сопоставление результата с исходной задачей, отметим один важнейший аспект. Текстовые задачи дают возможность привлечь внимание учащихся к тому, что происходит вокруг нас, приучить использовать математические знания для изучения и осмысливания действительности.

Обычно при решении текстовых задач от ее сюжета переходят к модели задачи (алгебраической, аналитической, геометрической). После такого перехода решение задачи заключается в решении модели (рис. 1).

Реализация этой схемы при решении школьных математических задач, как показывает практика, не дает больших возможностей для развития творчества учащихся. Очевидно и то, что кардинально преобразовывать данную схему нерационально: она эффективна для достижения дидактических целей математики, методика ее использования достаточно хорошо представлена в теории и практике школьного математического образования. Поэтому возникает необходимость ее доработки.

Заметим, что решение различного рода технологических задач, возникающих в практической деятельности человека, как раз и способствует развитию творческой составляющей личности. При этом, например, схема решения технических задач имеет на один шаг больше (рис. 2). Не означает ли это, что развитию креативности способствует переход от ситуации к задаче? Нельзя ли подобное применить и на уроках математики? Ответ на первый вопрос очевиден. Постараемся ответить на второй.

Задача отличается от ситуации наличием четкой формулировки, ее условие содержит все необходимые данные в явном виде, метод решения зачастую известен и представляет собой цепочку формальных операций, правильный ответ определен однозначно. Ситуация, в свою очередь, имеет неопределенное условие, предполагает различные подходы к решению, допускает множество верных результатов решений, благодаря чему она ближе к проблемным ситуациям, возникающим в жизни.

Ситуация очень тесно связана с практико-ориентированными задачами. Однако, основная цель практико-ориентированных (прикладных и практических) задач на уроках математики заключается в осуществлении содержательной и методологической связи школьного курса математики с профессиональной составляющей образования, то есть способствуют развитию профессиональных умений, входящих в состав учебной и познавательной деятельности в процессе изучения математики, а не развитию творчества учащегося. Поэтому такие задачи нельзя в полной мере считать ситуациями. Рассмотрим несколько примеров.

Задача 1. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре Р оно пропускало больше света.

Это – практико-ориентированная задача, ее решение заключается во введении функции и применении производной к ее исследованию (задача на максимум). Здесь присутствует четкая формулировка условия задачи, все необходимые данные в явном виде, метод решения представляет собой цепочку вполне стандартных операций. Поэтому это задача, а не ситуация.

Задача 2. Как можно, не переплывая реки, измерить ее ширину.

Это – ситуация. Из условия не совсем ясно, чем можно пользоваться, какая река. Она имеет разные подходы к решению, причем при каждом подходе мы приходим к формулировке новой задачи и реализации новой модели. Приведем лишь два примера.

Первый способ. Используем прибор с тремя булавками на вершинах равнобедренного прямоугольного треугольника. Пусть требуется определить ширину АВ реки (рис. 3), стоя на том берегу, где точка В, и не перебираясь на противоположный.

Держите булавочный прибор близ глаз так, чтобы, смотря одним глазом вдоль двух булавок, вы видели, как обе они покрывают точки В и А. Понятно, что, когда это вам удастся, вы будете находиться как раз на продолжении прямой АВ. Теперь, не двигая дощечки прибора, смотрите вдоль других двух булавок (перпендикулярно к прежнему направлению) и заметьте какую-нибудь точку D, покрываемую этими булавками, т.е. лежащую на прямой, перпендикулярной к АС. После этого воткните в точку С веху, покиньте это место и идите с вашим инструментом вдоль прямой CD, пока не найдете на ней такую точку Е (рис. 4), откуда можно одновременно покрыть для глаза булавкой b шест точки С, а булавкой а – точку А. Это будет значить, что вы отыскали на берегу третью вершину треугольника АСЕ, в котором угол С – прямой, а угол Е равен острому углу булавочного прибора, т.е. половине прямого. Очевидно, и угол А равен половине прямого, т.е.

Страницы: 1 2 3


Другое по теме:

Анализ результатов экспериментальной работы по развитию речи младших школьников
Результаты анализа уровня развития речевых умений после формирующего эксперимента получились высокие. Умеют строить описание (последовательно и связно описывать) и раскрывать тему и основную мысль в сочинении - 88% класса, отбирать материал в соответствии с темой сочинения и использовать прилагател ...

Экологическое воспитание как актуальное направление дошкольной педагогики
В наши дни, когда мир находится на грани экологической катастрофы, экологическое воспитание, как никогда, является одной из актуальнейших проблем современности. Чтобы сохранить природу на планете, нужны образованные люди. От них будет зависеть ее судьба. И первые основы экологической культуры должн ...

Типовое положение о дошкольном образовательном учреждении
I. Общие положения 1. Настоящее Типовое положение регулирует деятельность государственных и муниципальных дошкольных образовательных учреждений всех видов. 2. Для негосударственных дошкольных образовательных учреждений настоящее Типовое положение является примерным. 3. Дошкольное образовательное уч ...

Категории

Copyright © 2020 - All Rights Reserved - www.edubrilliant.ru