Педагогика и воспитание » Элективный курс по математике для классов спортивно-оборонного профиля » Посторенние линии регрессии для корреляции

Посторенние линии регрессии для корреляции

Страница 2

Рассмотрим пример: "Играть ли в гольф?" Чтобы решить задачу, т.е. принять решение, играть ли в гольф, следует отнести текущую ситуацию к одному из известных классов (в данном случае - "играть" или "не играть"). Для этого требуется ответить на ряд вопросов, которые находятся в узлах этого дерева, начиная с его корня.

Первый узел нашего дерева "Солнечно?" является узлом проверки, т.е. условием. При положительном ответе на вопрос осуществляется переход к левой части дерева, называемой левой ветвью, при отрицательном - к правой части дерева. Таким образом, внутренний узел дерева является узлом проверки определенного условия. Далее идет следующий вопрос и т.д., пока не будет достигнут конечный узел дерева, являющийся узлом решения. Для нашего дерева существует два типа конечного узла: "играть" и "не играть" в гольф.

В результате прохождения от корня дерева (иногда называемого корневой вершиной) до его вершины решается задача классификации, т.е. выбирается один из классов - "играть" и "не играть" в гольф.

Любая модель, представленная в виде дерева решений, является интуитивной и упрощает понимание решаемой задачи. Результат работы алгоритмов конструирования деревьев решений легко интерпретируется пользователем. Это свойство деревьев решений не только важно при отнесении к определенному классу нового объекта, но и полезно при интерпретации модели классификации в целом. Дерево решений позволяет понять и объяснить, почему конкретный объект относится к тому или иному классу.

Алгоритм конструирования дерева решений не требует от пользователя выбора входных атрибутов (независимых переменных). На вход алгоритма можно подавать все существующие атрибуты, алгоритм сам выберет наиболее значимые среди них, и только они будут использованы для построения дерева.

Точность моделей, созданных при помощи деревьев решений, сопоставима с другими методами построения классификационных моделей (статистические методы, нейронные сети).

В практике часто встречаются конфликтные ситуации. Игра – это упрощенная модель конфликта. В отличии от конфликта игра ведется по четким правилам. Для решения конфликтов разработан специальный аппарат – теория игр. Для задания игры необходимо определить:

1. варианты действий игроков

2. объем информации каждого игрока о поведении противника

3. выигрыш, к которому приводит совокупность действий игроков.

Игра в которой участвуют два игрока называется парной. В игре где участвуют более двух игроков называется множественной.

Игра в которой выигрыш одного из игроков равен проигрышу другого, называют игрой с нулевой суммой (антагонистической игрой)

Естественным обобщением матричных игр являются бесконечные антагонистические игры (БАИ), в которых хотя бы один из игроков имеет бесконечное количество возможных стратегий. Мы будем рассматривать игры двух игроков, делающих по одному ходу, и после этого происходит распределение выигрышей. При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервала, т.к. всегда можно простым преобразованием любой интервал перевести в единичный и наоборот.

Введём определения и обозначения : [0; 1] – единичный промежуток, из которого игрок может сделать выбор;

х – число (стратегия), выбираемое игроком 1;

y – число (стратегия), выбираемое игроком 2;

Мi(x,y) – выигрыш i-го игрока; G (X,Y,M1,M2) – игра двух игроков, с ненулевой суммой, в которой игрок 1 выбирает число х из множества Х, игрок 2 выбирает число y из множества Y, и после этого игроки 1 и 2 получают соответственно выигрыши M1(x, y) и M2(x, y). Пусть, далее, G (X,Y,M) – игра двух игроков с нулевой суммой, в которой игрок 1 выбирает число х, игрок 2 – число y, после чего игрок 1 получает выигрыш М(x, y) за счёт второго игрока.

Большое значение в теории БАИ имеет вид функции выигрышей M(x, y). Так, в отличии от матричных игр, не для всякой функции M(x, y) существует решение. Будем считать, что выбор определённого числа игроком означает применение его чистой стратегии, соответствующей этому числу. По аналогии с матричными играми назовём чистой нижней ценой игры величину

V1 = M(x, y) или V1 = M(x, y),

Страницы: 1 2 3


Другое по теме:

Особенности навыков чтения у детей с нарушением интеллекта
Общеизвестно, что от уровня практического овладения словесной речью зависит приобретение различных знаний. Только речь, опирающаяся на достаточный словарный запас, может обеспечить полноценное общение с окружающими, стать основным средством познавательной деятельности, это осуществляется на уроках ...

Коррекционно-развивающая работа с умственно отсталыми детьми старшего дошкольного возраста
После проведения диагностики с экспериментальной группой умственно отсталых детей была организована коррекционная работа по развитию игровой деятельности. Цель коррекционно-развивающей работы: развитие игровой деятельности у умственно отсталых дошкольников. Задачи коррекционно-развивающей работы: о ...

Цели высшего профессионального образования
Цели профессионального образования выполняют системообразующую функцию в педагогической деятельности. Именно от выбора целей в наибольшей степени зависит выбор содержания, методов и средств обучения и воспитания. Виды педагогических целей многообразны. Можно выделить нормативные государственные цел ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru