Педагогика и воспитание » Элективный курс по математике для классов спортивно-оборонного профиля » Посторенние линии регрессии для корреляции

Посторенние линии регрессии для корреляции

Страница 1

Во многих задачах требуется установить и оценить зависимость изучаемой случайной величины У от одной или нескольких других величин. Так например может интересовать зависимость между спортивным результатом конькобежца и его аэробными возможностями, зависимость между силой мышц и скоростью их сокращения.

В некоторых случаях можно установить функциональную зависимость. При исследованиях в области спорта чаще всего приходится сталкиваться с корреляционной зависимостью, при которой каждому значению зависимой переменной соответствует ряд распределения зависимой переменной, и с изменением первой положение этих рядов закономерно изменяется.

Корреляционные зависимости могут быть представлены, как и в табличной форме так и в виде графической зависимости. Для этого каждой клетке корреляционной таблицы нужно равномерно распределить соответствующие указанной цифре число точек. Для построения первичного поля корреляции в обычной системе координат наносятся точки с координатами (Х;У) в соответствии с исходными данными.

В исследовательской работе корреляционные величины встречаются очень часто. Обычно величина У зависит от большого количества аргументов: Х1; Х2; …; Хm. В случае линейной функции эту зависимотсть можно записать в виде:

У=а+b1X1+b2X2+…+bmXm.

Например, результат конькобежца определяется не только аэробными возможностями организма, но также силой и скоростью сокращения мышц, техникой бега, волевыми качествами и т.д. Если анализировать все аргументы, то получится функциональная зависимость.

При изучении корреляционных зависимостей между двумя признаками обычно решаются следующие задачи:

Установление формы связи между функцией У и аргументом Х, то есть описание закона изменения величины условных средних в связи с изменением Х. Эта задача решается путем нахождения уравнения регрессии.

Оценка тесноты связи между У и Х. Решение этой задачи требует ответов на два вопроса:

Есть ли вообще между Х и У корреляционная зависимость, т.е. наблюдается ли закономерное изменение условных средних в связи с изменением Х?

Если корреляционная зависимость существует, то в какой степени она отличается от функциональной?

Для решения данной задачи могут использоваться различные модели. Наиболее часто используется регрессионная и корреляционная модель.

Регрессионная модель предполагает, что зависимая переменная У является случайной величиной, а значения независимой переменной задаются экспериментатором произвольно. Например, исследуя зависимость скорости мышечного сокращения от величины поднимаемого груза, можно наметить, какие грузы должен поднимать испытуемый.

Корреляционная модель предполагает, что обе переменные – случайные величины.

Простейшей формой связи между двумя переменными является линейная зависимость вида У=а+bX. Параметр а носит название начальной ординаты. Параметр b носит название коэффициента регрессии, он характеризует наклон прямой линии.

Расчет параметров уравнения регрессии производится по методу наименьших квадратов:

.

Для выполнения этого учловия параметры находят из решения системы уравнений:

Которое можно представить в виде готовых формул:

.

Уравнение регрессии служит для анализа формы связи между двумя признаками.

Дерево решений используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исхода испытаний. Составляя “дерево” решений нужно нарисовать “ствол” и “ветви”, отражающие структуру проблемы. Располагаются “деревья” слева направо. “Ветви” обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возникающие в результате этих решений.

Квадратные “узлы” обозначают места, где принимаются решение, круглые “узлы” - появление исходов. Так как принимающий решение не может влиять на появление исходов, ему остается лишь вычислять вероятность их появления.

Когда все решения и их исходы указаны на “дереве”, просчитывается каждый из вариантов, и в конце проставляется его денежный доход. Все расходы, вызванные решением, проставляются на соответствующей “ветви”.

Страницы: 1 2 3


Другое по теме:

Подвижные игры с мячом как средство развития детей старшего дошкольного возраста
Особое место среди подвижных и спортивных игр занимают игры с мячом. Упражнения в бросании, катании мячей способствуют развитию глазомера, координации, ловкости, ритмичности, согласованности движений. В играх с мячом развиваются быстрота, прыгучесть, сила, так как ребенку часто приходится в игровой ...

Классификация методов обучения естествознания
Метод - слово греческого происхождения, в буквальном переводе означает путь исследования, способ достижения какой-либо цели, решения конкретной задачи. В методике обучения под методом обычно понимают совокупность приемов, теоретических (мысленных) и практических операций, обеспечивающих овладение у ...

Причины, проявления агрессивности в дошкольном возрасте
Проблема развитии агрессии в детском возрасте во все времена волновала и по сей день волнует ученых всего мира. Психологи спорят о природе, причинах, формах выражения и возможностях ее предупреждения и ослабления. Агрессию определяют и как своеобразную защитную реакцию человека на те или иные раздр ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru