Новая педагогика » Развитие мышления и речи на уроках математики » О математических способностях

О математических способностях

Страница 3

Способные учащиеся тоже требуют к себе внимания и повседневных забот. Забот очень ответственных, поскольку на математические способности в век научно-технического прогресса и математизации знаний следует смотреть как на национальный капитал.

Возможности познания школьников с повышенными способностями не используются в классе и наполовину. Нередко им становится в классе скучно, и они начинают отвлекать товарищей от дела, начинают привыкать к мысли, что можно хорошие оценки получать почти автоматически, без систематического упорного труда. По-видимому, для таких учащихся следует разработать индивидуальные планы обучения, использовать систему дополнительных заданий, которые можно давать сразу же после выполнения основной части программы. Эти задания должны быть интересны и содержательны и в то же время составлены так, чтобы способные учащиеся несли моральную ответственность за их выполнение перед классом. Быть может, это будет чтение дополнительной литературы, на основе которой должна быть подготовлена статья в классную математическую газету или доклад для кружка. Понятно, что в такие дополнительные задания следует включать задачи повышенной трудности, доказательства теорем, находящихся в русле программы, но выходящих за пределы предусмотренного минимума.

Методика работы со способными учащимися заслуживает пристального внимания. Здесь есть над чем подумать, и необходимость в этом огромна. Ведь наша задача состоит не только в том, чтобы сохранить природные способности, но и в том, чтобы талантливые учащиеся не приобрели зазнайства, а ясно увидели, что потенциально каждый человек обладает некоторыми способностями и они не представляют в этом отношении исключения.

Нам следует так воспитывать учащихся с повышенными способностями, чтобы они поняли простую мысль: способности накладывают на них повышенные обязанности перед обществом, но не дают права относиться к другим без должного уважения.

Естественно возникает вопрос: что же следует предпринимать, чтобы не было ссылок на недостаток у учащихся математических способностей при изучении школьного курса математики? Что следует делать, чтобы подавляющее большинство школьников успешно усваивали курс математики и овладевали основами математического мышления, так необходимого в современной жизни?

На мой взгляд, основное — это вызвать интерес к предмету, непрерывно его поддерживать и научить учиться. Нужно показывать не только и не столько внутреннюю логическую стройность и завершенность математики, но также ее связи с другими науками, широту ее применений и богатство ее истории. Этому помогут и указания на философскую значимость математики. Школьник должен каждый день получать подкрепление убеждения в том, что математика является не только и не столько предметом для сдачи экзамена и получения диплома, сколько орудием для последующей работы, для разрешения многочисленных задач первостепенной важности. Школьник должен быть убежден, что знание математики необходимо всем — рабочим, инженерам, военным, экономистам, биологам. Несомненно, что интерес школьника к математике должен быть основан не только на широте ее применений, но и на понимании внутреннего логического совершенства и красоты самой математики.

Само собой разумеется, что ни один учебник не может вместить в себя все необходимые для этого сведения. Полноценные и разнообразные методические материалы должны раскрывать современную ценность математики, наглядно показывать примеры технических применений, важность математической строгости. Для этого можно использовать и теорию релейных схем, и задачи поиска неисправностей технических систем, и вопросы контроля качества продукции, и задачи медицинского диагноза. Рассказывая об ученых, полезно указывать, как они подходили к своим проблемам, откуда их черпали и как им удавалось сформулировать окончательный результат.

Необходимости развития инициативы, самостоятельности и чувства личной ответственности у каждого школьника нужны не только при решении задач по математике, но и в последующей жизни, когда сегодняшний школьник начнет работать на производстве, в школе, учреждении. К сожалению, мы нередко сами не развиваем, а гасим самостоятельность учащихся чрезмерной опекой. Иногда случается и так, что учитель отвергает с ходу оригинальное решение, предложенное учеником, только потому, что оно не соответствует структуре учебника, школьному стандарту. А это крайне опасно, поскольку при этом сковывается творческое начало. Другой разговор, если предложенное решение основано на ошибочном рассуждении, нестрого или же чересчур сложно. Но и в этом случае необходимо разобраться и указать, в каких пунктах допущены промахи.

Страницы: 1 2 3 4


Другое по теме:

Проблема познавательного развития в психологии
Интерес к особенностям детской психики в связи с задачами обучения и воспитания был свойствен всей передовой научно-педагогической мысли Нового времени, начиная от X. Вивеса, Я.А. Коменского и Дж. Локка. Во второй половине XVIII века этот интерес, резко обострившийся в связи с подъемом экономическо ...

Теоретические основы исследования проблемы развитие речи младших школьников
Актуальной темой в современной школе на сегодняшний день является развитие речи. Работа над правильностью речи является одним из основных направлений учебно-методической деятельности учителя по совершенствованию речевой культуры младших школьников. Это практическое обучение русскому языку, обучение ...

Психолого-педагогическая характеристика детского изобразительного творчества
Способность к творчеству является специфичной особенностью человека, которая дает возможность не только использовать действительность, но и видоизменять ее. Но прежде чем говорить о детском изобразительном творчестве, нужно сначала определить понятие творчества в целом с позиций различных наук. Тво ...

Категории

Copyright © 2025 - All Rights Reserved - www.edubrilliant.ru