Педагогика и воспитание » Методика изучения показательной и логарифмической функции в курсе средней школы. Простейшие показательные и логарифмические уравнения и неравенства » Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции

Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции

Страница 1

Методика изучения логарифмической функции

Изучение логарифмической функции начинается с выделения определения: функцию, заданную формулой называют логарифмической функцией с основанием . Основные свойства выводится из свойств показательной функции:

1. ,

т.к. при решении уравнения

,

т.е. любое положительное число имеет логарифм по основанию .

2. ,

т.к. по определению логарифма любого действительного числа справедливо равенство:

,

т.е. функции вида принимает значение в точке .

3. Логарифмическая функция на всей области определения возрастает (при a>1) или убывает (при 0<a<1).

Покажем, что при a>1 возрастает. Пусть и , надо доказать, что: . Допустим противное, т.е. что . Т.к. показательная функция при a>1 возрастает, то из неравенства следует: , что противоречит выбору . Следовательно: и функция при a>1 – возрастает.

Т.к. при a>1 функция возрастает, то логарифмическая функция положительна при x>1 и отрицательна для 0<x<1 (для основания 0<a<1 – наоборот). На основании рассмотренных свойств строится график этой функции.

Производная показательной и логарифмической функции

Приступая к изучению производной показательной и логарифмической функций, учащиеся знакомятся с новым для них числом e. Необходимость появления этого числа связывается с решением задачи о касательной к графику показательной функции, с угловым коэффициентом, равным 1, т.е. без доказательства принимается следующее утверждение:

существует такое число, больше 2 и меньшее 3 (это число обозначают буквой е), что показательная функция y=ex в точке 0 имеет производную, равную 1, т.е. (eΔx-1)/ Δx à при Δxà0.

Теорема: функция eæ дифференцируема в каждой точке области определения и (ex)'= ex. Опр.: Натуральным логарифмом называется логарифмом по основанию е:

ln x = logex

Верно соотношение:

eln a=a => ax=(eln a)x=ex ln a.

Теорема: показательная функция аx дифференцируема в каждой точке области определения, и:

(ax)'=axln a

Дифференцируемость логарифмической функции следует из того, что: графики у=ах и у=log ax симметричны относительно у=х. Показательная функция дифференцируема в любой точке, а ее производная не обращается в нуль, график показательной функции имеет негоризонтальную касательную в каждой точке. Поэтому и график логарифмической функции имеет невертикальную касательную в любой точке, а это равносильно дифференцируемости логарифмической функции на ее области определения.

Страницы: 1 2


Другое по теме:

Использования информационных технологий как средств наглядности обучения информатике
Развитие аудио и видеоинформации стало особенно заметным с развитием средств записи, передачи и воспроизведения звука и изображения. Сегодня эти средства встречаются не только в учреждениях образования, а пронизывают всю нашу жизнь. В истории аудиовизуальной культуры можно выделить три основных эта ...

Особенности физического развития учащихся 13-14 лет
Физическое развитие отражает процессы роста и развития организма на отдельных этапах индивидуального развития. Особенности физического развития и телосложения человека в значительной мере зависят от его конституции. Физическое развитие является одним из показателей уровня здоровья населения. Процес ...

Теоретические основы раздела «Алгоритм и исполнители»
Изучение раздела «Алгоритмы и исполнители» обычно начинается с исторической справки. Появление алгоритмов связано с именем математика Аль Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмом понимали только правила выполнения четырех арифметических ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru