Педагогика и воспитание » Процесс обучения младших школьников решению задач стохастического характера » Основные понятия теории вероятностей

Основные понятия теории вероятностей

Страница 8

эксперимент состоит из n независимых испытаний;

каждое испытание имеет два исхода − наступление некоторого события А и наступление события ;

вероятность события А в каждом испытании постоянна.

Теорема. Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р, а не появления − q. Тогда вероятность Pn(k) того, что в n испытаниях событие А появится ровно k раз, вычисляется по формуле Бернулли: Рn(k) = С×p×q.

Наивероятнейшее число наступления события А в п испытаниях − число k= k0 при котором вероятность Рn(k) является наибольшей.

Теорема. Если р0ир1,то наивероятнейшее число к0 можно определить из двойного неравенства: np-qkonp+p. Если np+p не является целым числом, то данное неравенство определяет лишь одно наивероятнейшее число. Если пр+р − целое число, то имеются два наивероятнейших значения:

k= пр-q и k= пр+ р.

Пример. Вероятность попадания в мишень при выстреле равна 0,8. Найдите: а) вероятность того, что при семи выстрелах произойдет пять попаданий в мишень; б) наивероятнейшее число k0 попаданий в мишень при семи выстрелах.

Решение. Рассматриваемый в задаче эксперимент удовлетворяет схеме Бернулли. Пусть А − событие "Попадание в мишень при выстреле". Тогда событие означает "промах". По условию Р(А) = р = 0,8 значит,

Р()=q=1-p=0,2.

а) для нахождения пяти попаданий при семи выстрелах воспользуемся теоремой:

Р7 (5)=Сpq=7!/(5!(7-5)!)× 0,8×0,20,275;

б) наивероятнейшее число попаданий в мишень при семи выстрелах находим (согласно теореме 11) из двойного неравенства:

7×0,8-0,2k07×0,8+0,8; 5,4k06,4, то есть k0= 6. Ответ. Р(А)=0,275; k0= 6.

Случайная величина − величина, которая при каждом испытании принимает то или иное числовое значение (наперед неизвестно, какое именно), зависящее от случайных причин, которые заранее не могут быть учтены. Случайные величины обозначают заглавными буквами латинского алфавита, а возможные значения случайных величин − малыми. Так, при бросании игрального кубика происходит событие, связанное с числом х, где х − выпавшее число очков. Число очков − случайная величина, а числа 1,2,3,4, 5,6 − возможные значения этой величины. Расстояние, которое пролетит снаряд при выстреле из орудия, тоже случайная величина (зависит от установки прицела, силы и направления ветра, температуры и других факторов), а возможные значения этой величины принадлежат некоторому отрезку [а;b].

Страницы: 3 4 5 6 7 8 9 10


Другое по теме:

Проектирование занятий по технологии
Проект урока "Домашняя экономика" Предмет: технология Тема урока: "Домашняя экономика" Класс: 8 класс Цели урока: Образовательная: сформировать у учащихся понятия о месте домашней экономики в семье обществе; Развивающая: развивать у учащихся целостность взглядов на семью, её рол ...

Что такое сюжетные задачи
Сюжетная задача – математическая задача, в которой описан жизненный сюжет, а именно, количественная сторона реальных процессов, явлений и ситуаций; она содержит требования найти искомую величину по данным в задаче величинам и связям между ними. Цели решения сюжетных задач: Формирование у учащихся о ...

Технология контроля образовательного процесса
Регуляция процесса осуществляется не только с учетом конечного продукта, но и на основании сведений о процессе получения этого конечного продукта. Такое управление позволяет выделить следующие структурные компоненты: 1. указание цели управления; 2. установление исходного состояния – управляемого пр ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru