Новая педагогика » Межпредметные связи физики и музыки » Физика колебаний. Свободные колебания

Физика колебаний. Свободные колебания

Страница 1

Хорошо известно, что в ряде случаев тело, получившее некоторое возмущение и предоставленное самому себе, после этого совершает колебания. Хотя такие свободные колебания сами по себе редко используются в технике, знакомство с ними необходимо, поскольку их роль в колебательном процессе чрезвычайно важна. Дело в том, что поведение системы при свободных колебаниях характеризуют её «динамическую индивидуальность», которая определяет поведение системы при всех других условиях. После того как по струне рояля ударит один из молоточков, струна продолжает совершать колебания – свободные колебания. Такие колебания возможны благодаря тому, что струна обладает двумя свойствами: 1) имеет массу и поэтому при своём движении может накапливать кинетическую энергию; 2) имеет способность накапливать потенциальную энергию при отклонении её от состояния равновесия. Точно так же обычный маятник может совершать колебания благодаря тому, что, во-первых, он обладает массой, и во-вторых, при отклонении от положения равновесия он накапливает потенциальную энергию. Свободные колебания обладают следующими свойствами: 1)развитие движения во времени зависит от того, когда оно началось; 2) движение постоянно затухает.

Если ударить по клавише «ля» средней октавы рояля мы услышим звук с частотой 440 Гц. В действительности это есть лишь частота преобладающих колебаний, поскольку струны рояля совершают, кроме того, дополнительные малые колебания с частотами 440*2, 440*3, 440*4 Гц и т.д. Эти колебания называются обертонами. Отчасти именно благодаря этим обертонам мы имеем возможность отличать звуки различных музыкальных инструментов, голосов людей, животных, птиц и т.д.

Для наилучшего представления этого колебания вообразим движение точки Q, описывающей с постоянной угловой скоростью w окружность радиуса a.Проекция радиуса a на ось x равна

Q

a Aaa x

x=acos(wt+j) (3.1)

где t–произвольный момент времени, j -начальная фаза колебаний. Формула (1.1) описывает гармонические колебания с периодом

T = 2p/w (3.1¢)

В акустике используют так называемую линейную частоту колебаний:

n=w/ 2p (3.1¢¢)

Скорость точки, совершающей колебания по закону (3.1) найдём как

u= dx/dt = - wa sin(wt+j) (3.2)

Колебательная система обладает одной степенью свободы, если всевозможные конфигурации, которые она способна принимать, можно различить, приписывая соответствующие значения только одной переменной величине так называемой «обобщенной координате». Так, положение цилиндра, катящегося по горизонтальной плоскости, определяется углом, на который он поворачивается относительно некоторого начального положения.

Обозначим через q обобщённую координату, определяющую конфигурацию системы с одной степенью свободы. Если в результате бесконечно малого изменения координаты dq, частица массы m проходит путь dS, то

dS=adq (3.3)

где a - коэффициент, обычно различный для различных частиц, а также зависящий от той конкретной конфигурации q, которая подверглась изменению. Отсюда, разделив на приращение времени Δt, получим для скорости этой частицы

V=adq/dt=aq¢ (3.4)

Следовательно кинетическая энергия частицы

T=½(mV²)=½aq¢² (3.5)

Где

a=(ma)²

Коэффициент a является, вообще говоря, функцией q; его можно назвать «коэффициентом инерции» для данной конфигурации q. Например, в случае цилиндра если q – угловая координата, то a – момент инерции (обычно переменный) относительно линии соприкосновения цилиндра с горизонтальной плоскостью. Потенциальная энергия системы, поскольку она зависит от конфигурации системы, является функцией только координаты q. Если обозначить её через f, то по закону сохранения энергии

Страницы: 1 2


Другое по теме:

Общая характеристика дошкольного возраста
Старший дошкольный возраст является периодом интенсивного психического развития. Особенности этого этапа проявляются в прогрессивных изменениях во всех сферах, начиная от совершенствования психофизиологических функций и кончая возникновением сложных личностных новообразований. В сфере ощущений отме ...

Выявление условий для развития изобразительного творчества детей в семье и детском саду и уровней изобразительного творчества у детей исследуемой группы
Констатирующий эксперимент был проведен в несколько этапов. Первым этапом было выявление условий для развития изобразительного творчества детей в семье и детском саду. С этой целью нами были разработаны анкеты для родителей и отдельно для воспитателя группы. Анкета для родителей включала вопросы, о ...

Опытно-экспериментальная работа по изучению условий влияния мотивации учения на уровень образованности младших школьников
В результате изучения психолого-педагогической литературы, знакомства с существующим опытом работы по проблеме изучения индивидуальных особенностей мотивации учения у младших школьников была выдвинута Цель исследования: экспериментально изучить влияние мотивации учения на уровень образованности уча ...

Категории

Copyright © 2021 - All Rights Reserved - www.edubrilliant.ru