Новая педагогика » Межпредметные связи физики и музыки » Физика колебаний. Свободные колебания

Физика колебаний. Свободные колебания

Страница 1

Хорошо известно, что в ряде случаев тело, получившее некоторое возмущение и предоставленное самому себе, после этого совершает колебания. Хотя такие свободные колебания сами по себе редко используются в технике, знакомство с ними необходимо, поскольку их роль в колебательном процессе чрезвычайно важна. Дело в том, что поведение системы при свободных колебаниях характеризуют её «динамическую индивидуальность», которая определяет поведение системы при всех других условиях. После того как по струне рояля ударит один из молоточков, струна продолжает совершать колебания – свободные колебания. Такие колебания возможны благодаря тому, что струна обладает двумя свойствами: 1) имеет массу и поэтому при своём движении может накапливать кинетическую энергию; 2) имеет способность накапливать потенциальную энергию при отклонении её от состояния равновесия. Точно так же обычный маятник может совершать колебания благодаря тому, что, во-первых, он обладает массой, и во-вторых, при отклонении от положения равновесия он накапливает потенциальную энергию. Свободные колебания обладают следующими свойствами: 1)развитие движения во времени зависит от того, когда оно началось; 2) движение постоянно затухает.

Если ударить по клавише «ля» средней октавы рояля мы услышим звук с частотой 440 Гц. В действительности это есть лишь частота преобладающих колебаний, поскольку струны рояля совершают, кроме того, дополнительные малые колебания с частотами 440*2, 440*3, 440*4 Гц и т.д. Эти колебания называются обертонами. Отчасти именно благодаря этим обертонам мы имеем возможность отличать звуки различных музыкальных инструментов, голосов людей, животных, птиц и т.д.

Для наилучшего представления этого колебания вообразим движение точки Q, описывающей с постоянной угловой скоростью w окружность радиуса a.Проекция радиуса a на ось x равна

Q

a Aaa x

x=acos(wt+j) (3.1)

где t–произвольный момент времени, j -начальная фаза колебаний. Формула (1.1) описывает гармонические колебания с периодом

T = 2p/w (3.1¢)

В акустике используют так называемую линейную частоту колебаний:

n=w/ 2p (3.1¢¢)

Скорость точки, совершающей колебания по закону (3.1) найдём как

u= dx/dt = - wa sin(wt+j) (3.2)

Колебательная система обладает одной степенью свободы, если всевозможные конфигурации, которые она способна принимать, можно различить, приписывая соответствующие значения только одной переменной величине так называемой «обобщенной координате». Так, положение цилиндра, катящегося по горизонтальной плоскости, определяется углом, на который он поворачивается относительно некоторого начального положения.

Обозначим через q обобщённую координату, определяющую конфигурацию системы с одной степенью свободы. Если в результате бесконечно малого изменения координаты dq, частица массы m проходит путь dS, то

dS=adq (3.3)

где a - коэффициент, обычно различный для различных частиц, а также зависящий от той конкретной конфигурации q, которая подверглась изменению. Отсюда, разделив на приращение времени Δt, получим для скорости этой частицы

V=adq/dt=aq¢ (3.4)

Следовательно кинетическая энергия частицы

T=½(mV²)=½aq¢² (3.5)

Где

a=(ma)²

Коэффициент a является, вообще говоря, функцией q; его можно назвать «коэффициентом инерции» для данной конфигурации q. Например, в случае цилиндра если q – угловая координата, то a – момент инерции (обычно переменный) относительно линии соприкосновения цилиндра с горизонтальной плоскостью. Потенциальная энергия системы, поскольку она зависит от конфигурации системы, является функцией только координаты q. Если обозначить её через f, то по закону сохранения энергии

Страницы: 1 2


Другое по теме:

Пути и средства сенсорного воспитания детей с умеренной и тяжелой интеллектуальной недостаточностью
Сенсорное развитие осуществляется на основе обеспечения взаимодействия чувственного отражения и моторных (двигательных) компонентов психической деятельности. Приоритетные направления работы по развитию сенсомоторной сферы у детей с тяжелыми и множественными нарушениями развития определяются с учето ...

Исторический аспект процесса интеграции предметов в современной школе
На развитие педагогической идеи процесса интеграции существенно влияет прогресс научного познания. Интеграция тесна, связана с дифференциацией. Эти процессы отражаются на построении системы учебных предметов и поиске способов обобщения знаний учащихся. «Интеграция - есть процесс сближения и связи н ...

Функции социального педагога, воздействующие на коррекцию поведения ребенка
Социальный педагог – это профессионально подготовленный специалист в области педагогики отношений в социуме. В семье, в сельской общине и на предприятии, в общеобразовательной школе, в больнице, приюте, детском доме, интернате для престарелых социальный педагог влияет на формирование воспитывающих, ...

Категории

Copyright © 2022 - All Rights Reserved - www.edubrilliant.ru