Педагогика и воспитание » Метод моделирования в ходе изучения вопросов общей биологии » Моделирование в биологии

Моделирование в биологии

Страница 2

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток.

Модели биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, — дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

Математические модель (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической модели и дают материал для её дальнейшей корректировки. Математическая модель в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, модель сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической модели физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А. Н. Колмогоров). Марковская математическая модель процесса эволюции построена О. С. Кулагиной и А. А. Ляпуновым. И. М. Гельфандом и М. Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.

Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом. В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента, то они будут в основном следующими:

- эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);

- вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);

- некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;

- большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально - этическим соображениям.

Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов, в целом ряде преимуществ:

1. С помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования;

Страницы: 1 2 3


Другое по теме:

Средства и методические основы построения ППФП
В качестве основных средств ППФП используют довольно разнообразные формы физических упражнений из числа тех, которые сложились в базовой физической культуре и спорте, а также упражнения, преобразованные и специально конструируемые применительно к особенностям конкретной профессиональной деятельност ...

История развития программы Интел «Обучение для будущего»
«Intel® Обучение для будущего» – всемирная благотворительная программа профессионального развития учителей. Программа призвана помочь учителям наиболее полно освоить новейшие информационные и педагогические технологии, расширить их использование в повседневной работе с учащимися и при подготовке уч ...

Роль и место темы "Многоугольники" в школьном курсе геометрии
В курсе геометрии VII-IX классов систематически изучаются геометрические фигуры на плоскости, причем большое внимание уделяется многоугольникам, изучению их свойств, рассмотрению величин, характеризующих плоский многоугольник. В решении задач на многоугольники находят применение различные методы. С ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru