Новая педагогика » Формирование вычислительной культуры учащихся 5-6 классов » Умение рационализировать вычисления

Умение рационализировать вычисления

Страница 1

Рационализация вычислений требует от учащихся, помимо знаний всех основных свойств арифметических действий над числами, элементарного желания «упростить себе жизнь», затратить на выполнение, громоздкого по виду, задания как можно меньше времени, увидеть самый короткий, но от этого не менее правильный путь достижения результата.

Простейшие приемы рационализации вычислений появляются еще в 5 классе при ознакомлении учащихся с основными законами сложения и умножения: сочетательным, переместительным и распределительным. Все эти же законы продолжают «работать» и в 6 классе, но используются не только для множества натуральных чисел, но и для дробей, и для положительных и отрицательных чисел. Подсчитывая значение произведения или суммы, школьники, пользуясь этими законами, переставляют множители или слагаемые, таким образом могут выполнить вычисления быстрей и проще, чем при последовательном сложении или умножении.

А применение распределительного закона умножения, вообще является одной из тем при изучении умножения дробей в учебнике Н.Я. Виленкина и др. «Математика 6, 1 часть», т.е. помимо основного правила умножения рассматривается еще один способ, который помогает облегчить вычисления.

Приведем примеры:

1.

Подобный способ позволяет пропустить целых два действия, порой вызывающие затруднения у учащихся – это переведение в неправильную дробь смешанного числа и обратно – из неправильной дроби выделить целую часть.

2. -3,9+8,6+4,7+3,9–4,7=(-3,9+3,9)+(4,7–4,7)+8,6=8,6

В подобном задании, пользуясь переместительным законом сложения, учащиеся должны отыскать пары чисел, дающие в сумме ноль (в том числе и пары противоположных чисел). И в итоге вычисления будут максимально простыми.

Ученики должны, прежде всего, научиться не только рационально вычислять, но и в целом, так сказать, «рационально мыслить и рассуждать», т.е. искать более удобные способы не исключительно в вычислениях, но и при решении задач, при составлении уравнений, при их решении, при преобразовании различных выражений. Часто, прежде чем приступить непосредственно к вычислениям, нужно просто заметить, что то или иное выражение можно преобразовать, упростить, а лишь после этого выполнять действие.

Важным элементом вычислительной культуры является умение выполнять прикидку и оценку результата вычислений. В основе этого умения лежит умение округлять числа.

В ряде случаев бывает нужно установить, имеет ли решение некоторая задача при указанных значениях параметров, оценить порядок значения некоторого выражения, сравнить между собой значения нескольких выражений.

Умение, не производя громоздких вычислений, оценивать результат вычислений, является одним из главных критериев математической культуры учащегося, так как основывается не только на знании конкретного теоретического материала, но в первую очередь и на умении применять теоретический материал в самых разнообразных, нестандартных ситуациях. Научить этому можно, только проводя систематическую работу по выработке соответствующих умений буквально на каждом уроке.

В следующих параграфах будут более подробно рассмотрены приемы прикидки и оценки результата вычислений.

Успех в вычислениях во многом определяется степенью отработки у учащихся навыков устного счета. Не секрет, что у детей с прочными вычислительными навыками гораздо меньше проблем с математикой.

Страницы: 1 2 3


Другое по теме:

Рекомендации по усовершенствованию социальной работы по формированию положительного отношения подростков к здоровью
Проблема здоровья подрастающего поколения считается чрезвычайно важной во всем мире, так как оно является основным показателем благополучия общества и государства. В последние годы наблюдается неуклонный рост числа заболеваний и отклонений в состоянии здоровья детей и подростков, возникновение кото ...

Психолого-педагогические особенности детей с умственной отсталостью
Проблемам умственной отсталости в отечественной дефектологии всегда уделяли большое внимание. Но, начиная с 60-х годов, интерес к ним ещё более возрастает. Г.Е. Сухарева, М.С. Певзнер, О.Е. Фрейров, М.Г. Блюмина, И.Л. Юркова и ряд других учёных внесли неоценимый вклад в теорию и практику специально ...

Функции контрольно-аттестационного комплекта в образовательном процессе
Контроль знаний учащихся является составной частью процесса обучения. По определению контроль это соотношение достигнутых результатов с запланированными целями обучения. Некоторые учителя традиционно подходят к организации контроля, используют его в основном ради показателей достигнутого. Проверка ...

Категории

Copyright © 2020 - All Rights Reserved - www.edubrilliant.ru