Новая педагогика » Сравнительный анализ методик преобразований Галилея в курсе общей физики и в курсе элементарной физики » Сравнительный анализ методик

Сравнительный анализ методик

Страница 2

Как движется лодка относительно этих двух систем?

Наблюдатель на плоту, двигаясь вместе со «своей» системой координат по течению, видит, что лодка удаляется от него к противоположному берегу все время перпендикулярно течению. Он видит это и в точке А, и в точке В, и в любой другой точке. А когда через некоторое время плот окажется в точке С, лодка достигнет противоположного берега в точке С’. Относительно подвижной системы координат (плота) лодка совершила перемещение . Разделив его на , подвижный наблюдатель получит скорость лодки относительно плота:

.

Совсем другим представится движение лодки неподвижному наблюдателю на берегу. Относительно «его» системы координат лодка за то же время совершила перемещение . За это же время подвижная система отсчета вместе с плотом совершила перемещение (лодку, как говорят, «отнесло» вниз по течению). Схематически перемещения лодки показаны на рисунке. [3]

Далее в этом параграфе вводятся формула сложения перемещений

и формула сложения скоростей

,

а так же, чему равна скорость тела относительно неподвижной системы координат.

Мы видим, что и перемещение и скорость тела относительно разных систем отсчета различны. Различны и траектория движения ( – относительно подвижной системы и – относительно неподвижной). В этом и состоит относительность движения.

Далее мы переходим к рассмотрению преобразований Галилея в курсе общей физики.

С объяснения этого понятия начинается изучение принципа относительности Галилея. Сопоставляются описания движения частицы в инерциальных системах отсчета и, движущихся друг относительно друга со скоростью (рис. 6).

Рис. 6

Для простоты выбираются оси координат так, как показано на рисунке. Отсчет времени начинается с того момента, когда начала координат и совпадали. Тогда координаты и произвольно выбранной точки будут связаны соотношением . При сделанном выборе осей и . В ньютоновской механике предполагается, что время во всех системах отсчета течет одинаково; поэтому . Таким образом, получается совокупность четырех уравнений:

, , , ,

называемых преобразованиями Галилея. Эти уравнения позволяют перейти от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы.

Следуя по программе, далее рассматриваются инерциальные системы отсчета и первый закон Ньютона.

Законы механики одинаково выглядят во всех инерциальных системах отсчета.

Затем необходимо познакомиться с классическим законом сложения скоростей. Мы знаем, что компоненты скорости частицы в системе определяются выражениями

Страницы: 1 2 3


Другое по теме:

Вектор саморазвития личности и проблема исследования личностной идентичности
Самоидентификация определяется как самооценка собственных личностных свойств и потенций в качестве деятельного субъекта, включая физические, нравственные и психологические качества, отраженные в самосознании личности. В процессе онтогенеза, происходит формирование самотождественности личности, дост ...

Моделирование педагогического процесса по формированию математических знаний и умений у учащихся с нарушением слуха во внеклассное время
Повышение эффективности учебного процесса обусловлено совершенствованием методики обучения, формированием и поддержанием у младших школьников интереса к учёбе. Данные нашего исследования расширяют представления о внеклассной работе. Хорошо организованная и интересная внеклассная работа по математик ...

Особенности деятельности государственных и негосударственных организаций в сфере образования
Роль образования в условиях постиндустриального общества заметно растет. На международном уровне концепция высшего образования находится в центре внимания ЮНЕСКО. О системном кризисе образования на Западе заговорили уже в конце 60-х гг. ХХ в. В России он обострен и связан с кардинальными изменениям ...

Категории

Copyright © 2019 - All Rights Reserved - www.edubrilliant.ru